TDbf manual

Micha Nelissen

11th September 2004

Contents

[__Introduction 5

2 Class structurd 6
B TDbl. . .. 6
Bo TDLFLd . . . 6
B3 TDbfFieldDef 6

B_File typed 7

U Expressions 7

E_FaqQ 8
5.1 Does TDbf support imagesd 8
5.2 Why do deleted records not show up when using ixPrimary indexes? 9
5.3 How can I make an index on a TDateTime fieldd 9
5.4 How can I sort the display of the recards differently? 9
5.5 Why does RecordCount return too many recordsd 9
5.6 How to know if a record is cirrently being edited by another nserd 10
5.7 How to handle different character sets and locale sortingd 10

232 OnCompareRecard 27
233 OnFilterRecord o o o 27

734 OnLanguageWarning o o v ovov i 28
235 OnlLocaleErrad 28
[236_OnIndexMissing o oo 28

[2.37_OnCopyDateTimeASSEIIng . « « « o v o ovoee e e e e e 28
|Z.38 On Iranslatd 28

1 Introduction

TDBEF is a freeware native data access component for all Borland Delphi language compatible
environments. This includes Delphi, C++Builder, Kylix and FreePascal. It allows you to
create very compact database programs which don’t need any special installer programs. The
DB engine code is compiled right into your executable. It has the following features:

e Works without the Borland Database Engine.

e Allows the use of all dBASE native type (character, numeric, logical, date, and memo).
See property TableLevel.

e Memo files are supported, both text and binary so you can use fields with no size limit.
e File format 100% compatible with dBASE III+ or dBASE IV or dBASE for Windows.
e Support for Clipper and Visual FoxPro tables.

e Restructuring existing tables to drop, add or modify a current table structure while
retaining table data.

e Multi-user access through BDE compatible locking. Only 1 user can lock a particular
record for writing, but multiple users can read the record.

e Index support available for fast sorting, searching and ranging of big tables. Indexes
supported include NDX and MDX index files.

e Expression parser for both indexes and filters.

e OS dependant multi-codepage and multi-locale support. This allows you to read and
write tables in different codepages than your OS and to specify a sort order better suited
for your language or locale. Currently, this is not yet supported on the Linux OS.

2 Class structure

2.1 TDbf

File: Dbf.pas

The TDDbf class is the main class, and the main interface for most programmers. You open/-
close dbase files, add/select/remove indexes with this class. It stores the current record
number, the selected index, etc. TDbf is a TDataSet-descendant and therefore the usual
delphi data-aware controls like TDBEdit, TDBNavigator, TDBGrid, etc. can be used.

2.2 TDbfFile

File: Dbf_DbfFile.pas

This class handles the dbf file itself, it remembers what index files are open, and updates
them when needed and provides an interface to lock records. The split TDbf/TDbfFile was
originally to share open dbf files, so more TDbf components can open the same file at the
same time. However, this has multi-user problems, and now each TDbf component opens it’s
own TDbfFile.

2.3 TDbfFieldDef

File: Dbf_Fields.pas

TDbfFieldDef is an enhanced version of TFieldDef, handling native field types to VCL field
types conversion and dbase fields specific features. One problem of VCL TFieldDefs is their
inability to store the size and precision of float fields. To use this ability you need to create
a set of TDbfFieldDefs instead.

3 File types

.dbf A dBase or FoxPro file. Contains the data of all fixed size fields. Records are fixed
size.

.dbt A memo file. Memo contents are variable in size, and the memo field in the .dbf
contains a pointer to a block number in the memo file which contains the actual
memo data.

.ndx An index file. Contains one index, and is created and referenced in tdbf using it’s
filename and extension. For example: Dbf1.AddIndex(’index1.ndx’, ’fieldl’,
[1); creates and opens an index file named “indexl.ndx”. This index file can
be closed by calling Dbf1.CloseIndexFile(’index1.ndx’);. If you close the
dbf file without closing the index files, they are automatically closed. Note that
they are not automatically opened next time the dbf is opened again. For the
index to be maintained, it must be opened after the tdbf is opened by calling
Dbfl.0penIndexFile(’indexl.ndx’);.

.mdx A Multiple Index file. Essentially a collection of several NDX files in one. Each dbf
file can have one accompanying .mdx file, if the dbf file is named file.dbf, the mdx file
is named file.mdx. Indexes are created automatically in the accompanying mdx file
if you name them without the extension .ndx; example: Dbf1.AddIndex(’index1’,
’fieldl’, [1);. Note that if an .mdx file is present, it’s automatically opened and
maintained, you don’t need to call OpenIndexFile for it.

4 Expressions

Expressions are used in indexes and in filters. When adding an index with AddIndex, section
BEX you need to supply an index expression. When you want to apply a filter, you need to
supply a filter expression in the Filter, section [LTHl property. Functions and operators are
case insensitive.

For index expressions, you must take care that if the result is a string, that then it’s length is
not longer than 100 characters. Use the SUBSTR function to get the first X characters, if it’s
too long. Example:

Dbf1l.AddIndex(’INDEX1’, ’DTOS(DATEFIELD)+SUBSTR(LONGFIELD,1,10)+SUBSTR
(LONGFIELD2,1,20)°, [1);

Supported operators:

+ Concatenate two strings, or add two numbers
Subtract two numbers
* Multiply two numbers
/ Divide two numbers
= Compare two strings, numbers or booleans for equality
<> Compare two strings, numbers or booleans for inequality

< Return iff first argument smaller than second argument
<= Return iff first argument smaller than or equal to second argument
> Return iff first argument greater than second argument
>= Return iff first argument greater than or equal to second argument

NOT Negate the boolean argument to the right
AND Returns true iff first and second boolean argument are true
OR Returns true iff first or second boolean argument is true

Supported functions:

STR(numl|,size,precision))
Converts a number num to a string with optional size and precision

num number to convert to string

size the total number of characters to output

precision the number of digits to the right of the decimal point
DTOS(date)

Converts date to a string with representation YYYYMMDD
SUBSTR(str,index,count)

Extracts a substring from string str from position indexr and length count
UPPER(str)

Returns the uppercase equivalent of string str
LOWER(str)

Returns the lowercase equivalent of string str

5 FAQ

5.1 Does TDDbf support images?

TDbf does support images. You need to make a table with TableLevel > 4 to be able to do
that. That’s because the Memo needs to use level 4 (= binary) encoding. So set tablelevel
to at least 4, make some fields, make a BLOB field (ftGraphic, whatever) and CreateTable.
Attach a TDBImage to it, and it should work.

Another solution is attaching a TDBRichEdit to a memo field and pasting an image in it.

5.2 Why do deleted records not show up when using ixPrimary indexes?

When a record is deleted, it’s key is deleted immediately from ixPrimary indexes, to prevent
key violations when you want to insert another record with the same key. As the record is
not in the index, it is not “visited”, and therefore does not show up.

5.3 How can I make an index on a TDateTime field?

Use an expression index and the DTOS function:

Dbf1l.AddIndex(’INDEX1’, ’DTOS(FIELD1)’, [1);

where FIELD1 is the ftDateTime field and INDEX1 the name of the index.

5.4 How can I sort the display of the records differently?

You need to add an index that sorts the records in the order you want. See for an example
the previous question. Next, you need to “select” the index to be used to sort the records.
This is done using:

Dbfl.IndexName := ’INDEX1°’;

where INDEX1 is the name of the index you created using AddIndex.

The index can be deselected by selecting the empty name index:

Dbfl.IndexName := ’7;

Note that you can create multiple indexes by calling AddIndex multiple times, but you can
select only one index at a time.

5.5 Why does RecordCount return too many records?

When no index is active, the RecordCount property returns the total number of records in
the table including deleted ones. When an index is active, it returns a number based upon
internal index tree, usually very large. RecordCount is made for speed, and has the sequential
property, so TDBGrid can approximately show using it’s scrollbar the position of the current
record in the range.

If you need exact number of active records, use the ExactRecordCount function, which is very
slow (it reads all records from beginning to end).

5.6 How to know if a record is currently being edited by another user?

Just try to edit the record using Dbf1.Edit; and when a record “lock” is in place, meaning
another user is editing the record, an exception will be fired.

5.7 How to handle different character sets and locale sorting?

When creating the table, you determine in what character set and sorting locale the data is
stored and sorted. Make sure you are using tablelevel > 4. In Dbf Lang.pas you will find a
list of all possible character set / locale combinations. Choose an apprioriate one and before
creating the table set it, for example hex 22, hungarian locale, charset 852:

Dbfl.LanguagelID := DbfLangId _HUN_852;

Dbfl.CreateTableEx(...);

The LanguagelD and CodePage can also be queried of any opened table.

5.8 How to undelete records?

When records are Deleted, they are just marked as being deleted. To undelete them, set
ShowDeleted to true, navigate to the record you want to undelete, and call Undelete.

5.9 How can I restructure a table?

To restructure a table, create a new TDDbfFieldDefs collection with the new structure of the
table, and pass that to RestructureTable. The CopyFrom property determines the index
of the field to copy data from. Note that when using TDbfFieldDefs.Assign to copy the
structure of the fields, the CopyFrom fields are assigned automatically, if you have Delphi 5
(or BCB 5) or higher. A CopyFrom property with value -1 indicates a new field.

See also RestructureTable, section B30

6 Methods
6.1 GetFieldData

function GetFieldData(Field: TField; Buffer: Pointer): Boolean;
override;

10

{From Borland Help} Most applications do not need to call GetFieldData. TField objects
call this method to implement their GetData method.

The Field or FieldNo parameter indicates the field whose data should be fetched. Field speci-
fies the component itself, while FieldNo indicates its field number. The Buffer parameter is a
memory buffer with sufficient space to accept the value of the field as it exists in the database
(unformatted and untranslated). NativeFormat indicates whether the dataset fetches the field
in C++Builders native format for the field type. When NativeFormat is false, the dataset
must convert the field value to the native type. This allows the field to handle data from
different types of datasets (ADO-based, BDE-based, and so on) in a uniform manner.

GetFieldData returns a value that indicates whether the data was successfully fetched.

GetFieldData returns true if the buffer is successfully filled with the fields data, and false if
the data could not be fetched.

6.2 Resync

procedure Resync(Mode: TResyncMode); override;

TDbf supports disabling of resync calls. See property DisableResyncOnPost.

6.3 CreateBlobStream

function CreateBlobStream(Field: TField; Mode: TBlobStreamMode):
TStream; override; {virtual}

{From Borland Help} Call CreateBlobStream to obtain a stream for reading data from or
writing data to a binary large object (BLOB) field. The Field parameter must specify a
TBlobField component from the Fields property array. The Mode parameter specifies whether
the stream will be used for reading, writing, or updating the contents of the field.

Blob streams are created in a specific mode for a specific field on a specific record. Applications
should create a new blob stream every time the record in the dataset changes rather than
reusing an existing blob stream.

6.4 Translate

{$ifdef DELPHI_4}

function Translate(Src, Dest: PChar; ToOem: Boolean): Integer;
override; {virtual}

{$else’}

procedure Translate(Src, Dest: PChar; ToOem: Boolean); override; {
virtual}

{$endif}

The data stored in a DBF file is written in a specific codepage, the “OEM” codepage. Win-
dows uses the “ANSI” codepage to display data. This function translates between these

11

codepages.

Specifying true for ToOem translates from Windows to DBF. Specifying false for ToOem
translates from DBF to Windows.

6.5 ClearCalcFields

procedure ClearCalcFields(Buffer: PChar); override;

An internal method.
6.6 CompareBookmarks

function CompareBookmarks(Bookmarkl, Bookmark2: TBookmark): Integer;
override;

{From Borland Help} Call CompareBookmarks to determine if two bookmarks are identical
or not. Bookmarkl and Bookmark2 are the bookmarks to compare.

If the bookmarks differ, CompareBookmarks returns 1. If the Bookmarks are identical, or
both bookmarks are NULL, CompareBookmarks returns 0.

6.7 CheckDDbfFieldDefs

procedure CheckDbfFieldDefs(DbfFieldDefs: TDbfFieldDefs);

Checks if you used invalid field types in your TDbfFieldDef definitions taking into account
the current TableLevel. When using TableLevel smaller than 7, not all types are possible.

6.8 AddIndex

{$ifdef DELPHI_5}

procedure AddIndex(const AIndexName, Fields: String; Options:
TIndexOptions; const DescFields: String=’’);

{$else}

procedure AddIndex(const AIndexName, Fields: String; Options:
TIndexOptions);

{$endif}

Name is the name of the new index. Name must contain an index name with length shorter
than or equal to 10.

Fields is a AnsiString value containing the field or an expression on which the new index will
be based.

Options is a set of attributes for the index. The Options parameter may contain any one,

multiple, or none of the TIndexOptions constants: ixPrimary, ixUnique, ixDescending, ixCa-
selnsensitive, and ixExpression.

12

e ixPrimary specifies a distinct unique index. An exception will be thrown when you try
to insert 2 equal keys.

e ixUnique specifies an unique index. Duplicate key entries will be ignored.
e ixDescending specifies reverse sorting order.
e ixCaselnsensitive is not used.

o ixExpression need not be given; it is autodetected when the Fields parameter is parsed.

6.9 Regeneratelndexes

procedure Regeneratelndexes;

Clears all attached indexes, then recreates them from scratch.
6.10 CancelRange

procedure CancelRange;

{From Borland Help} Call CancelRange to remove a range currently applied to a table.
Canceling a range reenables access to all records in the dataset.

6.11 SearchKey

function SearchKey(Key: Variant; SearchType: TSearchKeyType): Boolean
function SearchKeyPChar(Key: PChar; SearchType: TSearchKeyType):
Boolean;

This function assumes you selected a particular index, using the IndexName property.
Key specifies the value to search for in the active index. You can specify the key as a variant
type, or pass a native buffer using the SearchKeyPChar function. In the native case, pass a

buffer according to the following rules based on index and key type:

e String index: a pointer to the first character of a null-terminated character array.

e MDX, numeric: a pointer to a buffer containing a BCD, a binary coded decimal in
dBase format.

e NDX, numeric: a pointer to a double.

SearchType is one of the following:

e stEqual searches exactly Key. Returns false if no key matches.

13

e stGreaterEqual searches exactly Key or, if not found, the record which key is greater.
Returns false if end of file is found.

o stGreater searches the first record which key is greater than specified Key. Returns false
if end of file is found.

When false is returned as result, the cursor is not moved.

6.12 SetRange

procedure SetRange(LowRange: Variant; HighRange: Variant);
procedure SetRangePChar(LowRange: PChar; HighRange: PChar);

This function assumes you selected a particular index, using the IndexName property. The
function applies a range to the current dataset. LowRange specifies the lower bound and
HighRange specifies the upper bound. For the parameter formatting of the SetRangePChar
function, see SearchKeyPChar.

6.13 PrepareKey

function PrepareKey(Buffer: Pointer; BufferType: TExpressionType):
PChar;

This function converts a key from a given type into the internal type. This is useful for
numeric indexes: a pointer to an integer or int64, with BufferType etInteger or etInt64, will
return the same key in BCD format. The result can then be used in a call to SearchKeyPChar.
Note: the result is a temporary buffer, which is invalidated by the next call to a tdbf method!
6.14 ExtractKey

procedure ExtractKey(KeyBuffer: PChar);

KeyBuffer: you need to provide a buffer of length 100 characters minimal.

If an index is selected, the function will extract the key from the current record’s buffer and
copy it into KeyBuffer.

6.15 UpdatelndexDefs

procedure UpdateIndexDefs; override;

An internal method that calls update on the fielddefs, which in turn causes both the field and
index definitions to be read from the dbase and index files.

6.16 GetFileNames

14

procedure GetFileNames(Strings: TStrings; Files: TDbfFileNames); {
$ifdef SUPPORT_DEFAULT_PARAMS} overload; {$endif}
{$ifdef SUPPORT_DEFAULT_PARAMS}

function GetFileNames(Files: TDbfFileNames = [dfDbf]): string;
overload;

{$else}

function GetFileNamesString(Files: TDbfFileNames (*x = [dfDbf] x)):
string;

{$endif}

Provide a TStrings instance, and the function will fill it with the currently opened filenames.
dfDbf The main dbf filename

TDbfFileNames specifies what files to report: dfMemo The memo filename if any
dfIndex Any open index files

6.17 GetIndexNames

procedure GetIndexNames(Strings: TStrings);

Strings specifies a list which upon return contains a list of all indexes. Entries in this list can
be used to set the property IndexName.

6.18 GetAllIndexFiles

procedure GetAllIndexFiles(Strings: TStrings);

Returns all *.ndx in the directory of the dbf file, ie. which are possible candidates to open
with OpenIndexFile.

6.19 TryExclusive

procedure TryExclusive;

Requires Active to be true. Call TryExclusive to try to get exclusive access to the open file,
without having to call Close, set Exclusive to true and reopening. The property Exclusive
will be properly updated to reflect the new status. Investigate the Exclusive property if this
attempt was successful.

6.20 EndExclusive

procedure EndExclusive;

If you are done operating in exclusive mode, call EndExclusive to return to the previous
mode.

6.21 LockTable

function LockTable(const Wait: Boolean): Boolean;

15

Call LockTable to lock the whole table. Wait specifies whether the component should wait
to actually get to lock, or fail if the lock cannot be applied.

The difference between LockTable and Exclusive mode is that in Exclusive mode, others
cannot open the file anymore, except when ReadOnly is true, but when LockTable is called,
they can still open the file in read write mode. When LockTable has succeeded others cannot
alter records, because all attempts to lock an individual record will fail.

6.22 UnlockTable

procedure UnlockTable;

When the table was locked with LockTable, call UnlockTable to unlock the table.
6.23 OpenlIndexFile

procedure OpenIndexFile(IndexFile: string);

Call OpenlndexFile to attach IndexFile, a secondary, non-maintained index file, for example
an NDX file, to the DBF file. While the index file is attached, it will be maintained.

6.24 Deletelndex

procedure DeleteIndex(const AIndexName: string);

AlndexName specifies an index to remove.

e If this index is contained in the accompanying MDX file, it will be removed there.

e In the case of an NDX file, it will be closed, detached, then removed from disk.

6.25 CloselndexFile

procedure CloseIndexFile(const AIndexName: string);

An opened indexfile by OpenlndexFile, or by settings Indexes property, can be closed by
calling CloselndexFile. The particular index will not be maintained any longer.

6.26 RepagelndexFile

procedure RepageIndexFile(const AIndexFile: string);

When the size of an index file is watched, it can be noticed that the size will not decrease when
an index is removed. This functions will “repage” the given index file to attempt to reduce
it’s size. Enter an empty string to repage the accompanying MDX file of the table. The effect
of RepagelndexFile and recreating all indexes in the index file is about the same, however,

16

RepagelndexFile will be much quicker. RepagelndexFile can be thought of as a “PackTable”
for a given index file. NOTE: you need enough memory for this operation because a temporary
index file will be created in memory and then written to disk.

6.27 CompactIndexFile

procedure CompactIndexFile(const AIndexFile: string);

CompactIndexFile is alike RepagelndexFile, the argument is compatible, and it also tries to
reduce the index file size. However it will do this better, but slower, than RepagelndexFile.
It compacts the index file so that it uses the minimum amount needed for the index, while
usual AddIndex/RepagelndexFile leaves gaps in the index tree. Note that, when you start
inserting or modifying keys after calling this function, the index file will slowly start to grow
again to usual size.

6.28 Locate

function Locate(const KeyFields: string; const KeyValues: Variant;
Options: TLocateOptions): Boolean; override;

Call Locate to search a dataset for a specific record and position the cursor on it.
KeyFields is a string containing a semicolon-delimited list of field names on which to search.

KeyValues is a variant array containing the values to match in the key fields. If KeyFields
lists a single field, KeyValues specifies the value for that field on the desired record. To specify
multiple search values, pass a variant array as KeyValues.

Options is a set that optionally specifies additional search latitude when searching on string
fields. If Options contains the loCaselnsensitive setting, then Locate ignores case when match-
ing fields. If Options contains the loPartialKey setting, then Locate allows partial-string
matching on strings in KeyValues. If Options is an empty set, or if the KeyFields property
does not include any string fields, Options is ignored.

Locate returns true if it finds a matching record, and makes that record the current one.
Otherwise Locate returns false.

If you enter one keyfield to search on, and it matches an open index, then it will use that
index to do the search. In that case, Options will be ignored, as if you specified loPartialKey.

6.29 LocateRecord

function LocateRecord(const KeyFields: string; const KeyValues:
Variant; Options: TLocateOptions; bSyncCursor: Boolean): Boolean;

This is an internal method that does the actual work for the Locate functions.

6.30 IsDeleted

17

function IsDeleted: Boolean;

Call IsDeleted to check if the current record is marked as deleted. This can only be true if
the property ShowDeleted is true.

6.31 Undelete

procedure Undelete;

Call Undelete to unmark the current record as deleted.
6.32 CreateTable

procedure CreateTable;

Call CreateTable at runtime to create a table using this datasets current definitions. If the
table already exists, CreateTable overwrites the tables structure and data.

If the FieldDefs property contains values, these values are used to create field definitions.
Otherwise the Fields property is used. One or both of these properties must contain values
in order to create a database table.

If the Indexes property contain values, these values are used to create indexes on the table.
See also CreateTableEx.
6.33 CreateTableEx

procedure CreateTableEx(DbfFieldDefs: TDbfFieldDefs);

Call CreateTableEx to create a table using given field definitions. These dbf field definitions
give more power, as you can specify precision for numeric fields, for example.

6.34 CopyFrom

procedure CopyFrom(DataSet: TDataSet; FileName: string;
DateTimeAsString: Boolean; Level: Integer);

Use this procedure to copy the contents of a given DataSet into a new TDDbf table. DataSet is
the TDataSet you want to copy from, FileName is the complete (including path and extension)
filename of the new table. DateTimeAsString determines whether datetime fields should be
converted to string fields in the target table. This is especially useful if you want to use
TDbf to create mailing sources for a text processor for example. If this parameter is set
True an event OnCopyDateTimeAsString is triggered where you can override the default
datetime-to-string conversion which is based on your current local settings. Level determines
the TableLevel of the target table.

18

In order to convert prior TDbf version 6.0 datetime values into a BDE compatible format
use this procedure as follows: drop two instances of TDbf on a form, set DateTimeHandling
of TDbfl to dtDateTime and connect it with the existing table. Make sure TDbf2 is set
to dtBDETimeStamp and call CopyFrom with DataSet = TDbfl and DateTimeAsString =
False. You can then replace the old table with the new one and use TDbf in dtBDETimeStamp
mode in your application.

6.35 RestructureTable

procedure RestructureTable(DbfFieldDefs: TDbfFieldDefs; Pack: Boolean)

)

Call RestructureTable to change the field structure of the current table.

DbfFieldDefs allows you to specify the new structure. Each fielddef contains a property
CopyFrom, which is the index of field from which to copy information. Fields with index that
are not mentioned in any DbfFieldDef’s CopyFrom, will be dropped. If you Assign to copy a
table’s DbfFieldDefs to a new list for modification, then the CopyFrom property of the new
list’s fielddefs will be automatically assigned, except for Delphi 3 users. So Delphi 3 users
beware, specify CopyFrom property correctly to prevent fields from getting dropped without
you wanting it!

Pack specifies whether to pack the table, that is, to remove records marked for deletion.
6.35.1 Example

NewFieldDefs: TDbfFieldDefs;
NewFieldDef: TDbfFieldDef;
Dbf1l: TDbE,;

// create new field list

NewFieldDefs := TDbfFieldDefs.Create(Self);

// assign current list
NewFieldDefs.Assign(Dbfl.DbfFieldDefs);

// assume first field is string, 20 wide, make larger to 40

NewFieldDefs.Items [0].Size := 40;

// rename second field to ’RENAMED’
NewFieldDefs.Items[1].FieldName := ’RENAMED’;
// add a float field

NewFieldDef := NewFieldDefs.AddFieldDef;
NewFieldDef.FieldName := ’NEW_FLOAT’;
NewFieldDef.FieldType := ftFloat;
NewFieldDef.Size := 10;

NewFieldDef.Precision := 3;

// restructure table and pack
Dbfl.Restructure(NewFieldDefs, true);

// restructure table and not pack
//Dbfl.Restructure(NewFieldDefs, false);
// free mem

NewFieldDefs.Free;

19

6.36 PackTable

procedure PackTable;

Call PackTable to actually remove records marked for deletion. When records are deleted,
they are just marked. When PackTable is called, these records will be physically removed.
As is, it will call RestructureTable with a nil pointer for DbfFieldDefs, and true for Pack.

6.37 EmptyTable

procedure EmptyTable;

The EmptyTable method deletes all records from the table. It retains the current field and
index structure.

6.38 Zap

procedure Zap;

An alias for EmptyTable.

6.39 InitFieldDefsFromFields

{$ifndef DELPHI_5}
procedure InitFieldDefsFromFields;
{$endif}

InitFieldDefsFromFields is an internal method used in various functions, CreateTable for
example. It creates field definitions for a given set of Fields. This function is only needed for
Delphi 4 and older, because in Delphi 5 and later, this function is implemented in TDataSet.

7 Properties

7.1 AbsolutePath

property AbsolutePath: string read FAbsolutePath;

The absolute path for the current table. See FilePathFull.
7.2 DbfFieldDefs

property DbfFieldDefs: TDbfFieldDefs read GetDbfFieldDefs;

DbfFieldDefs lists the field definitions for a dataset, alike the TDataSet.FieldDefs, except
that TDbfFieldDefs are better suitable for dbase tables. It includes information for native
field types, and precision for numeric fields for example. See TDbfFieldDefs.

20

To access fields and field values in a dataset, use the Fields and FieldValues properties, and
the FieldByName method.

7.3 PhysicalRecNo

property PhysicalRecNo: Integer read GetPhysicalRecNo write
SetPhysicalRecNo;

Examine PhysicalRecNo to determine the physical record number for the current record. It
can be set to position the cursor on that record. The difference to RecNo is that reading
RecNo returns the sequential record number which is the same if no indexes are active, but
could be different if there is an index active.

7.4 LanguagelD

property LanguageID: Integer read GetLanguageID write SetlLanguagelD;

Examine LanguagelD to determine the codepage, locale combination the table is using. See
Dbf_Lang.pas to decipher the information. Set it before calling CreateTable to specify a
codepage/locale combination for a table.

7.5 LanguageStr

property LanguageStr: String read GetLanguageStr;

Examine LanguageStr to read codepage, locale information for level 7 dbase tables.
7.6 CodePage

property CodePage: Cardinal read GetCodePage;

Examine CodePage to determine the codepage the dbase data is stored in.
7.7 ExactRecordCount

property ExactRecordCount: Integer read GetExactRecordCount;

Examine ExactRecordCount to determine the exact number of records in the current dataset.
This takes into account deleted, filtered and indexed records. This in contrary to Record-
Count, which will always give a rough upper bound estimate. Note that this property needs
to scan the complete dataset to find the number of records that are active, while Record Count
is just a simple calculation.

7.8 DbfFile

property DbfFile: TDbfFile read FDbfFile;

21

An internally used property to retrieve access to the more lower level access functions. Ap-
plication users should have no need to use this property.

7.9 UserStream

property UserStream: TStream read FUserStream write FUserStream;

Use UserStream to specify a memory stream to be used for opening/creating a table. See
also the Storage property.

7.10 DisableResyncOnPost

property DisableResyncOnPost: Boolean read FDisableResyncOnPost write
FDisableResyncOnPost;

When a record is posted, TDataSet fetches all records in the “neighbourhood” of the current
record. The property DisableResyncOnPost controls this behaviour. It can possibly increase
speed if you're adding a block of records. See also TDataSet::DisableControls.

7.11 DateTimeHandling

property DateTimeHandling: TDateTimeHandling read FDateTimeHandling
write FDateTimeHandling default dtBDETimeStamp;

Prior to version 6.0 TDbf used to store values in 'Q’ (ftDateTime) fields as Delphi type
TDateTime. To be compatible with the BDE, however, datetimes need to be stored as BDE
type TimeStamp (which is milliseconds elapsed since 01/01/0001 plus one day). To provide
backward compatibility you can use this property to determine whether TDbf will read and
write datetime values as TDateTime or as BDE TimeStamp. Default now is dtBDETimeS-
tamp but in order to read values in existing TDbf tables you need to choose dtDateTime.
If you want to convert your data to be BDE compatible have a look at the new procedure
CopyFrom.

7.12 Exclusive

property Exclusive: Boolean read FExclusive write FExclusive default
false;

Use Exclusive to prevent other applications from accessing a table while it is open in this
application. Before opening the table, set Exclusive to true. A table must be closed before
changing the Exclusive property.

When Exclusive is true, then when the application successfully opens the table, no other
application can access it. If the table for which the application has requested exclusive access
is already in use by another application, an exception is thrown. To handle such exceptions,
wrap the code that opens the table in a try..catch block. See also TryExclusive.

22

Do not set Exclusive to true at design time if you also set the Active property to true at
design time. In this case an exception is thrown because the table is already in use by the
IDE.

7.13 FilePath

property FilePath: string read FRelativePath write SetFilePath;

Examine FilePath to determine the user set file path of the current table. It can be relative
to the current directory or an absolute path. See FilePathFull.

7.14 FilePathFull

property FilePathFull: string read FAbsolutePath write SetFilePath
stored false;

Examine FilePathFull to determine the absolute path for the current table. It will always
read the absolute path, whether a relative or absolute path was given in FilePath. Mostly
used in the design time IDE, where you can set FilePath a relative path, then examine
FilePathFull where to file is going to be opened or created.

7.15 Filter

property Filter: string read FFilter write SetFilterText;

The Filter property specifies a condition for a record to be displayed. Records not matching
the condition are not displayed, they are skipped. Set the Filtered property to true to
activate the filter. Note that the OnFilterRecord event, see section [[33], also excludes
records from view, namely those for which you set Accept to false within the event handler.

7.16 Indexes

property Indexes: TDbfIndexDefs read FIndexDefs write SetDbfIndexDefs
stored false;

This property is deprecated in favour of the IndexDefs property, and may be removed in the
future.

7.17 IndexDefs

property IndexDefs: TDbfIndexDefs read FIndexDefs write
SetDbfIndexDefs;

IndexDefs is a collection of index definitions, each of which describes an available index for
the table. Define the index definitions of a table before calling CreateTable or creating a table
at design time.

23

Ordinarily, an application accesses or specifies indexes at runtime through the IndexName
and IndexFieldNames properties.

If IndexDefs is updated or manually edited, the StoreDefs property becomes true.

The index definitions in IndexDefs may not always reflect the current indexes available for a
table. Before examining IndexDefs, call its Update method to refresh the list.

7.18 IndexFieldNames

property IndexFieldNames: string read GetIndexFieldNames write
SetIndexFieldNames;

Use IndexFieldNames as an alternative method of specifying the index to use for a table. In
IndexFieldNames, specify the name of each column to use as an index for a table. You can also
specify an expression of an existing index. The column name specified in IndexFieldNames
must already be indexed.

The IndexFieldNames and IndexName properties are mutually exclusive. Setting one clears
the other.

7.19 IndexName

property IndexName: string read GetIndexName write SetIndexName;

Use IndexName to specify an alternative index for a table. If IndexName is empty, a tables
sort order is based on its physical record order.

If IndexName contains a valid index name, then that index determines the sort order of
records. The index name supplied to the IndexName property must either reside in the
table’s master index file, or in another index file already specified in the Indexes property or
opened with OpenlndexFile.

IndexFieldNames and IndexName are mutually exclusive. Setting one clears the other.
7.20 MasterFields

property MasterFields: string read GetMasterFields write
SetMasterFields;

Use MasterFields after setting the MasterSource property to specify the names of one or
more fields to use in establishing a detail-master relationship between this table and the one
specified in MasterSource.

MasterFields is a string containing one or more field names in the master table. Separate
field names with semicolons.

Each time the current record in the master table changes, the new values in those fields are

24

used to select corresponding records in this table for display.
7.21 MasterSource

property MasterSource: TDataSource read GetDataSource write
SetDataSource;

Use MasterSource to specify the name of the data source component whose DataSet property
identifies a dataset to use as a master table in establishing a detail-master relationship between
this table and another one. The specified DataSource’s DataSet must be another TDbf table.

At design time choose an available data source from the MasterSource propertys drop-down
list in the Object Inspector.

After setting the MasterSource property, specify which fields to use in the master table by
setting the MasterFields property. At runtime each time the current record in the master
table changes, the new values in those fields are used to select corresponding records in this
table for display.

7.22 OpenMode

property OpenMode: TDbfOpenMode read FOpenMode write FOpenMode default
omNormal;

OpenMode specifies what to do if a table does not exist by this name and Active is set to
true, or Open is called.

e omNormal fails the open action if the file does not exist.
e omAutoCreate creates a new table as if CreateTable is called, and opens it.

e omTemporary is not used.

7.23 ReadOnly

property ReadOnly: Boolean read FReadOnly write FReadonly default
false;

ReadOnly specifies to open the file in read only mode. If it is true, the table’s data can not
be altered. You can open a table in read only mode although it is already open in exclusive
mode.

7.24 ShowDeleted

property ShowDeleted: Boolean read FShowDeleted write SetShowDeleted
default false;

25

ShowDeleted specifies whether or not to show the records marked for deletion. Use the
IsDeleted function to determine if the current record is marked for deletion.

7.25 Storage

property Storage: TDbfStorage read FStorage write FStorage default
stoFile;

This property specifies what kind of storage type is used: file or memory. If it is stoFile,
you need to specify a FilePath and TableName where to open or create the file. When it is
stoMemory, you need to specify a UserStream, which is then used as backend storage.

7.26 StoreDefs

property StoreDefs: Boolean read FStoreDefs write FStoreDefs default
False;

If StoreDefs is true, the table’s index and field definitions are stored with the data module
or form. Setting StoreDefs to true makes the CreateTable method into a one-step procedure
that creates fields, indexes, and validity checks at runtime.

StoreDefs is false by default. It becomes true whenever FieldDefs or Indexes is updated or
edited manually; to prevent edited (or imported) definitions from being stored, reset StoreDefs
to false.

7.27 TableName

property TableName: string read FTableName write SetTableName;

Use TableName to specify the file name of the database table this component encapsulates.
You can specify a full filepath with filename, in which case the filepath part split and stored
in the FilePath property.

To set TableName, the Active property must be false.
7.28 TableLevel

property Tablelevel: Integer read FTablelevel write SetTablelevel;

Examine TableLevel to find the current table level. Set TableLevel to specify the table level
for to be created tables. The Active property must be false to be able to set TableLevel.
These are the possible levels:

e 3: dBase ITII+ compatible.

e 4: dBase IV compatible. The only difference to dBase III+ is the current codepage,
locale. dBase 111+ uses no translation for the codepage and a binary sort order for the
indexes.

26

e 7: Visual dBase VII. Not all features are supported, but these give an summary:

— More field types: datetime, 32 bit integers, 64 bit doubles.

— Default values for fields. This info can be found via the DbfFieldDef HasDefault
and DefaultBuf properties.

— Min and Max values for fields are NOT supported, but can be read.
— Referential integrity is NOT supported.

e 25: FoxPro compatible. The native field types are a bit different, but very comparable
to dBase IV. CDX indexes are not supported.

7.29 UseFloatFields

property UseFloatFields: Boolean read FUseFloatFields write
FUseFloatFields default true;

When UseFloatFields is enabled, it forces the use of float fields, even though numeric fields
have zero precision. When disabled, 32 or 64 bit integer fields will be used, depending on the
size of the field.

7.30 Version

property Version: string read GetVersion write SetVersion stored false

>

Examine Version to find the version of the TDbf component.

7.31 BeforeAutoCreate

property BeforeAutoCreate: TBeforeAutoCreateEvent read
FBeforeAutoCreate write FBeforeAutoCreate;

When a table does not exist, OpenMode is omAutoCreate and Open is called, this event will
be fired. Implement BeforeAutoCreate to prevent the automatic creation of the table.

7.32 OnCompareRecord

property OnCompareRecord: TNotifyEvent read FOnCompareRecord write
FOnCompareRecord;

This event is not used.

7.33 OnFilterRecord

TFilterRecordEvent = procedure(DataSet: TDataSet; var Accept: Boolean)
of object;

property OnFilterRecord: TFilterRecordEvent read FOnFilterRecord write
SetOnFilterRecord;

27

If the Filtered property is true, this event is called for each record to determine whether it
should be viewed, or should be skipped. If you set the Accept parameter to true, the record
is viewed, if you set it to false, the record is skipped. See also the Filter property, section
(1O

7.34 OnLanguageWarning

property OnLanguageWarning: TLanguageWarningEvent read
FOnLanguageWarning write FOnLanguageWarning;

Write an OnLanguageWarning event to inhibit the action taken when a table’s data is stored
in a specific codepage, but this OS can not translate the data for viewing into it’s ANSI
codepage. You can specify a readonly mode, or edit nonetheless.

7.35 OnLocaleError

property OnLocaleError: TDbfLocaleErrorEvent read FOnLocaleError write
FOnLocaleError;

Write an OnLocaleError event to inhibit the action taken when index data is stored in a
specific order, but this OS does not have the capability to sort records according to this sort
order. You can try to read or even alter the index nonetheless, but the index can be easily
corrupted if you do not know exactly what you are doing.

7.36 OnlndexMissing

property OnIndexMissing: TDbfIndexMissingEvent read FOnIndexMissing
write FOnIndexMissing;

Write an OnlndexMissing event to inhibit the action taken when a table specifies that it had
an index attached, but it is gone. The default is to break the link, but you can refuse to open
the table.

7.37 OnCopyDateTimeAsString

property OnCopyDateTimeAsString: TConvertFieldEvent read
FOnCopyDateTimeAsString write FOnCopyDateTimeAsString;

Write an OnCopyDateTimeAsString event to provide a custom formatting of DateTime fields
into string fields. See the CopyFrom procedure.

7.38 OnTranslate

property OnTranslate: TTranslateEvent read FOnTranslate write
FOnTranslate;

Write an OnTranslate event to provide custom translating of the table’s data into the OS
“ANSI” codepage.

28

	Introduction
	Class structure
	TDbf
	TDbfFile
	TDbfFieldDef

	File types
	Expressions
	FAQ
	Does TDbf support images?
	Why do deleted records not show up when using ixPrimary indexes?
	How can I make an index on a TDateTime field?
	How can I sort the display of the records differently?
	Why does RecordCount return too many records?
	How to know if a record is currently being edited by another user?
	How to handle different character sets and locale sorting?
	How to undelete records?
	How can I restructure a table?

	Methods
	GetFieldData
	Resync
	CreateBlobStream
	Translate
	ClearCalcFields
	CompareBookmarks
	CheckDbfFieldDefs
	AddIndex
	RegenerateIndexes
	CancelRange
	SearchKey
	SetRange
	PrepareKey
	ExtractKey
	UpdateIndexDefs
	GetFileNames
	GetIndexNames
	GetAllIndexFiles
	TryExclusive
	EndExclusive
	LockTable
	UnlockTable
	OpenIndexFile
	DeleteIndex
	CloseIndexFile
	RepageIndexFile
	CompactIndexFile
	Locate
	LocateRecord
	IsDeleted
	Undelete
	CreateTable
	CreateTableEx
	CopyFrom
	RestructureTable
	Example

	PackTable
	EmptyTable
	Zap
	InitFieldDefsFromFields

	Properties
	AbsolutePath
	DbfFieldDefs
	PhysicalRecNo
	LanguageID
	LanguageStr
	CodePage
	ExactRecordCount
	DbfFile
	UserStream
	DisableResyncOnPost
	DateTimeHandling
	Exclusive
	FilePath
	FilePathFull
	Filter
	Indexes
	IndexDefs
	IndexFieldNames
	IndexName
	MasterFields
	MasterSource
	OpenMode
	ReadOnly
	ShowDeleted
	Storage
	StoreDefs
	TableName
	TableLevel
	UseFloatFields
	Version
	BeforeAutoCreate
	OnCompareRecord
	OnFilterRecord
	OnLanguageWarning
	OnLocaleError
	OnIndexMissing
	OnCopyDateTimeAsString
	OnTranslate

